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Abstract. The transformations of the action-angle variables allowed by the definition are 
described and the arbitrariness in the dependence of the Hamiltonian on the action-angle 
variables is explained. For Hamiltonian systems with the SU(n) algebra of integrals of 
motion an inverse relationship of ‘actions’ to generators of the symmetry group is discussed. 

1. Introduction 

The idea of introducing the action-angle variables in the study of Hamiltonian systems 
comes from astronomy. The definition of these variables given in the 19th century by a 
French mathematician Delaunay, however, has been limited to separable systems. A 
generalisation, independent of the notion of separability, was formulated by Arnol’d 
(1978). His approach allows us to define the action-angle variables for every 
completely integrable Hamiltonian system with n degrees of freedom (i.e. with n 
independent integrals of motion in involution), provided that the invariant manifolds 
determined by the integrals are connected and bounded. These manifolds then are 
diffeomorphic to n-dimensional tori T“, and the action variables are defined 
geometrically as the integrals of the differential one-form p ,  dq, over the fundamental 
cycles rz on the tori: Ik = $rk is independent of the choice of the 
cycle homotopic to r k .  

Originally the action-angle variables were applied mainly to perturbation calculus in 
astronomy. Later they became a useful tool for quantisation of classical systems. The 
recent discovery of a whole class of completely integrable systems of n particles 
interacting on the line has renewed interest in the action-angle variables. However, 
there exist some ambiguities of the choice of the action-angle variables within Arnol’d’s 
definition. 

The aim of this paper is to describe the transformations of the action-angle variables 
allowed by the definition (cf Stehle and Han 1967). For Hamiltonian systems possess- 
ing the SU(n) algebra of integrals, an inverse relationship of ‘actions’ to generators of 
the symmetry group is discussed, providing the action variables for non-separable 
systems. 

For simplicity, our considerations are limited to two-dimensional systems only, and 
the generalisation for arbitrary n is briefly discussed. 

p ,  dq,. The value of 
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2. Preliminaries 

We shall consider a classical Hamiltonian system with two degrees of freedom admitting 
the action-angle variables (II, 12, wl, w2). Let F ( I l ,  12) = (dH/aIl)/(~H/d12) and let D 
be an open set of R such that F is defined for all (II, 12) ED and 

(i) F ( I 1 ,  12) = constant for all (Il, 12) E D  or 
(ii) there exists no open set D ' c D  (D'# 0) such that F ( I l ,  12) =constant for all 

( I I > I 2 )  E D ' .  
In case (i) we shall call the system degenerate (non-degenerate) on D if F ( I 1 ,  12) is a 
rational (irrational) number. Continuity arguments ensure that in case (ii) the trans- 
formations of the action-angle variables have the same form as for non-degenerate 
systems. 

3. Non-degenerate systems 

A classical Hamiltonian system with two degrees of freedom admitting action-angle 
variables (Il, 12, wl, w2), where (Il, 12) E D, is said to  be non-degenerate if the ratio 
v 1 / v 2  of the frequencies Y, = ;iH/aIi is an irrational number for all (Il, 12) ED. In this 
case each orbit of the system is dense in its torus. This fact is connected with the 
non-existence of the third independent and single-valued integral of motion. If 
(Il, 12, wl, w2) are the action-angle variables, then the uniqueness of the tori restricts 
the permissible transformations of the action-angle variables to 

where the mapping (II, 12) -+ ( J 1 ,  J 2 )  is a diffeomorphism and ski, fk  are arbitrary C 2  
functions such that the matrix [ a k , ]  is non-singular for all (II, 12) ED. We shall limit 
ourselves to the transformations for which fk (Il, 12) = 0. This is justified because the 
functions f k  do not influence geometrical aspects of the transformation. 

The angle variables are infinitely-many-valued functions of the physical variables 
(for example, of the separation variables). Two sets of coordinates, which differ by a 
multiplicity of 27r, describe the same point in the phase space. To satisfy the same 
condition in the new angle variables a k l  have to be integers. An analogous argument for 
the inverse transformation yields wk = Cik l u l  +&U2 where Ciki are also integers. The 
matrix [Ci] is the inverse of [a]. 

The determinant of the integer matrix is integral, and therefore from det([a]-'] = 

(det[a])-' for integer matrices [a] and [a]-' we obtain det[a] = f 1. Conversely, the fact 
that [a] is the integer matrix and det[a] = +l  implies that [a]-' is an integer matrix too. 

From these considerations we can conclude that if uk = a k l w l  +ak2w2, then U ' ,  u 2  
are angle variables on the torus, if and only if [a] is an integer matrix and det[a] = f 1. 

The formula $yE dw, = 2 d , ,  defines the cycles r, on the torus corresponding to the 
angle variables w,. 

Let r: denote a cycle corresponding to the new angle variable U,. Four relations 
(defining the cycles) &: du, = 27~4, yield 
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Now it is easy to calculate new action variables. By definition, 

J 2 = ' i  (II dwI+12dw2) =det[a](aI,1*-a1211). 
2~ ri 

Writing Jk = a ;  *II +aL212 we obtain [a'] = where [ -1' denotes the transposed 
matrix. The canonical Poisson-bracket relations {ui,  J j }  = ai, are automatically satisfied. 

Let us now return to formulae (1). Clearly, it is always possible to define new 
variables as 

J k  = I k  + c k ,  u k  = w k  + f k  (11, 12). 

From the Poisson-bracket relation {ui,  U , }  = 0 we obtain d f z / d I l  = df  l / d I 2 ,  and ulti- 
mately we obtain 

J k  = I k  + c k ,  u k  = w k  + d f / d I k ,  (*I 
where f is an arbitrary C 3  function of 11, 12. 

The shifts (*), together with the linear transformations discussed above, describe the 
whole freedom of choice of the action-angle variables on fixed tori. 

The simple generalisation of the above considerations for non-degenerate Hamil- 
tonian systems with more than two degrees of freedom is obvious. The transformations 
to new action-angle variables are of the same form as in the case n = 2 ,  with integer 
matrices with integral inverses. 

4. Degenerate systems 

A classical Hamiltonian system with two degrees of freedom, admitting the action- 
angle variables (II, 12, w w2), is said to be degenerate on D if 1 ,  d H / d I I  = l 2  dH/d12 for 
all (II, 12) E D  with l , ,  l 2  integers. This formula means that the ratio of frequencies 
v1/v2 is rational. One can therefore construct the third independent integral of motion 
I 3  = sin(llw , - 12w2), which will be a single-valued, bounded function on the phase 
space, The existence of the third independent and single-valued integral is, in fact, 
equivalent to the condition of degeneracy. 

In the case of degeneracy the orbits of the system are closed on the tori. Therefore 
we have a freedom of extension of the one-dimensional tori to two-dimensional ones. 

Equivalently, we have a freedom of choice of two independent integrals of motion in 
involution (as the functions of 11, 12, 13). They determine the two-dimensional tori. It is 
easier to see this in the action-angle variables 'compatible with the structure of 
trajectories' (CST). 

We shall call the action-angle variables CST variables if the Hamiltonian is a function 
of a one-action variable only: 

H = H(I1). 

Thus the equations of motion in CST variables take the form 

I, = 0, 6, =dH/dIl ,  

I 2  = 0, w 2  = 0. 
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The variable w describes a linear motion along a closed curve and w z  is an infinitely- 
many-valued integral of motion. As the third single-valued integral of motion one can 
take I 3  = sin w2. 

It is easy to show that CST variables exist for every degenerate Hamiltonian system 
with two degrees of freedom. Namely, let H =H(Il / l l+12/12)  with 11, l 2  mutually 
prime; then one can always choose integers k l ,  k 2  satisfying 12kl - I l k 2  = 1 and define 
new action variables as 

J1 = lJ l+ l l I2 ,  Jz=kzIl+k112. (*I 
They are CST variables since H =H[(1/1112)Jl]. 

canonical transformations of the form 
The freedom of choice of CST variables for a fixed Hamiltonian is described by 

and from the canonical Poisson-bracket relations it follows that 

Thus, the canonical transformations (2) complemented by the transformations on 
fixed tori (1) represent the whole freedom of choice of the action-angle variables for a 
degenerate Hamiltonian system with two degrees of freedom. Moreover, as in CST 

variables the Hamiltonian has the form H = f (*I l )  and transformations to all other 
action variables are of the form 11=12J1+11J2, where 11, l 2  are mutually prime, we 
arrive at the following conclusion. The dependence of the Hamiltonian on the 
action-angle variables is of the form H = f[*(12Jl +11J2)] where 1 1 ,  1, are arbitrary 
mutually prime integers and f is a fixed function of one variable. 

The formulae for the canonical transformations (2) as well as the above conclusion 
can be simply generalised for completely degenerate Hamiltonian systems with more 
than two degrees of freedom. It is sufficient to introduce CST variables through the 
application of the transformation (*) to various pairs of action variables in the way 
illustrated by the following example. 

Let us take the Hamiltonian H = H(1 111 + 1212 + 1 J 3 )  for the system with three 
degrees of freedom. New action variables can be introduced by the formulae 
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where l \ k 2 - - l ~ k l  = 1, l ; ,  1; are mutually prime and lk = 11;. We define again 

J i  = U, + 1 J 3  = 1 l I 1 +  1212 + 1313,  

J i  =JZ=k111+k212, 

J ;  = k 3 J 3 + k J 1 = k l ; I l + k l ~ I 2 + k 3 I ~  where Ik3-13k = 1. 

The Hamiltonian in the variables J i  is of the form H = H ( J ;  ), and therefore J ;  are CST 

variables. 
In the next two examples we show the simplest transformations satisfying (**) and 

discuss their relationship with the separability of the Hamiltonian in various coordinate 
systems. 

Example 1 .  For the simplest interesting functionsfl = Il,f2 = I 3  =sin w2,  the equations 
(**) have the following solutions satisfying the conditions of periodicity: 

g1= nw2, g 2  = *w2  + (nIl -12)/cos w2.  

Thus, the new action-angle variables are of the form 

J1= I1, 

J 2  =sin w 2 ,  

u 1  = w1 +nw2,  

u 2 =  fw2+(nIl-I2)/cos w 2 .  

Example 2. The separation of the Hamiltonian of the harmonic oscillator in the 
Cartesian coordinates (x, y ) gives the following action-angle variables: 

1/2 
w 2  1 

I, =-px” 2w +--x 2 ’ w, =sin-’(&) x, 

1/2 1 w 
Iy  = - p 2  2 w y  + - y 2  2 ’  w y  = s in- l (G)  y, 

where H = i ( p :  + p , ’ )  + i w 2 ( x 2 + y 2 ) .  Therefore the CST variables have the form 

I1 =I ,  + I y ,  w1= wy, I2 =I,, w2 = w, - wy. 

By separation of the Hamiltonian in the new, rotated coordinates 

u = x s i n 8 + y c o s 8 ,  U = --x cos 8 + y  sin 8, 

we obtain CST variables connected with I1, I2  by the transformation 

Likewise, the separation in polar coordinates gives CST variables connected with 11, I 2  
by the transformation 

(2“) 2 1 / 2  I ;  = fY(I1) = 11, ~ i = f i ( ~ ~ ,  I ~ ) = ~ I ~ - ( I ~ I ~ - I ~ )  sin w2.  

This means that for the functions f l ,  f 2  defined by the transformations (27, (2”) there 
exist solutions of equations (**) satisfying the necessary conditions of periodicity. This 
fact will be useful in the next section. 
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5. Relationship of the action-angle variables to the generators of the symmetry 
group 

In this section we shall use the SU(2) algebra of integral-generators of the symmetry 
group to obtain the action variables. 

Duimio and Pauri (1967) have presented a general technique for the construction of 
the SU(n) algebra of the integrals of motion from the action-angle variables. It is 
applicable for every completely degenerate bounded Hamiltonian system with n 
degrees of freedom. 

In the case n = 2 ,  if the Hamiltonian is of the form H=H(11/11+12/12) where 
1111 > 0, 1212 > 0, the most general realisation of the generators of the symmetry group 
SU(2) (up to an arbitrary single-valued canonical transformation) uniquely determining 
each trajectory is defined by the global and univalent integrals 

The integrals A, satisfy the commutation relations {AI, A,} = sIlkAk of the SU(2) 
algebra. The Casimir operator is K =A? +A; +A: =i(I1/l1 +12/12)2. In view of the 
generality of the Duimio and Pauri (1967) construction (cf Onofri and Pauri 1969), each 
set of the generators of SU(2) can be determined by formulae (3) from some action- 
angle variables. Thus by inverting formulae (3) one can recover the action variables: 

1 1 / 1 1  = (K)”*- A 3 ,  12/12 = (K)1’2+A3.  

The cyclic form of the commutation relations {A,, A,} = & , k A k  suggests that the 
different action variables can be defined by 

J1/1I = (K)’”-Ak, J2/Z2 = (K)’” +Ak, k = 1, 2. 

To  prove that J,  are indeed the ‘actions’ (i.e. can complement angles) we shall use CST 
variables. In agreement with the previous section, every Hamiltonian can be described 
in certain action-angle variables as H = H ( I 1  +I2) .  

Let us introduce CST variables by 

J1=11+12, U 1  = w2, J Z = I i r  u2= w1-wz; 

then the generators of SU(2) have the form 

2 1/2 A -1 
A 2 ( J 1 J 2  - J 2  1 cos u2, 3 - 2J1- J 2 ,  

2 1/2 A l  = ( J 1 J 2 - J 2 )  sin u2,  

and inverse relations yield 

J1 = 2(K)l12, J2 = (K)”* -A3. 

According to our guess, we define new CST variables as 

J’, = (‘)1/2 -A  - 1 2 1/2 J ;  =2(K)”2=J1 ,  -J1-(J1J2-J2) sinu2. 

The results of example 2 (2’) ensure that the above formulae really determine the 
transformation to CST variables. This is also true for the transformation defined by 
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as the mutual interchange of sinu2 and cosu2 does not change the periodicity of 
solutions of the equations (**). 

The above considerations present the method of obtaining the action-angle vari- 
ables. Namely, one can find the generators of the SU(2) symmetry group and obtain the 
action variables by the formulae 

1 1 / 1 1  = ( K ) ’ j 2  - Ak, 12/12  = (K)’” +A,, k = 1, 2,3.  

It is necessary to choose the integers 1 l 2  properly in order to ensure periodicity of the 
corresponding angle variables. This procedure allows us to connect with every SU(2) 
algebra of integrals three sets of action-angle variables. Thus, in order to construct new 
action variables, one can start from the algebra of integrals Ai  and look for new sets of 
integrals given by functions fk (Ai). The commutation relations {fk,fi} = Eklsfs provide 
us with the following system of differential equations for the generators: 

where i, j ,  k ,  r,s, t = 1, 2, 3. 
The cyclic form of this equation ensures that the general solution is given by the 

functionsf, of the first order in Ai. Therefore the Casimir operator f : + f : + f z = g(K),  
given by some function of the old one, has to satisfy f +f: + f z = cK, where c is some 
integer constant. We do not know a general solution for the system of equations (4). As 
a simple solution (preserving the Casimir operator of the algebra) we shall consider the 
rotations by an angle 8 around the A I  axis in the space of integrals. They lead to the 
following new generators: 

B1 = A I ,  B2 = A 2  cos 8 + A 3  sin 8, B3 = -A2 sin 8 + A 3  cos 8. 

Identical generators can be obtained from formulae (3) applied to action-angle vari- 
ables of the harmonic oscillator corresponding to separation coordinates rotated by an 
angle i8. It is straightforward to generalise this rotation by allowing angle 8 to be 
dependent on the generators Ai. Take 

B1 = A i ,  B2=A2 cosf(A1, Az ,  A3)+A3 sinf(A1, A z ,  A d r  

B3= -Az s inf (AI ,A2,Ad+A3 cosf(Al,A2,A3); 

then by virtue of (4), f ( A l ,  A2 ,  A3)  =f(A1,  A; +A:). 
However, there are solutions of equations (4) which do not preserve the Casimir 

operator. Let us take two algebras of integrals for the harmonic oscillator obtained by 
the separation in Cartesian coordinates (x ,  y )  and coordinates defined by U = x - y, 
v = x + y.  They are connected by the transformation 

A: -A: 
B -  A2A3 

(Ai  +A:)’/’’ 3-(Ag+A;)1/2’ B2 = B - - -  
1 -  % I >  

which does not preserve the Casimir operator: B: +B: t B :  = (A: + A i  +A:)/4. 
It is simple to generalise the above considerations for completely degenerate 

Hamiltonian systems with more than two degrees of freedom. Formulae for the 
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generators of the SU(n)  symmetry group given by Duimio and Pauri (1967): i.e. 

I, I, 
sin(liwi -l,w,), 

allow us to enlarge the prescription for obtaining 'actions'. It is necessary to solve the 
system of algebraical equations 

IiIj 
li 1, -=(M;  +Ni)/4 (for n 2 3). 
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