On the freedom of choice of the action-angle variables for Hamiltonian systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 141099
(http://iopscience.iop.org/0305-4470/14/5/029)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:09

Please note that terms and conditions apply.

On the freedom of choice of the action-angle variables for Hamiltonian systems

Marek Antonowicz
Institute of Theoretical Physics, Warsaw University, Hoża 69, PL 00-681 Warsaw, Poland

Received 6 August 1980, in final form 7 November 1980

Abstract

The transformations of the action-angle variables allowed by the definition are described and the arbitrariness in the dependence of the Hamiltonian on the action-angle variables is explained. For Hamiltonian systems with the $\operatorname{SU}(n)$ algebra of integrals of motion an inverse relationship of 'actions' to generators of the symmetry group is discussed.

1. Introduction

The idea of introducing the action-angle variables in the study of Hamiltonian systems comes from astronomy. The definition of these variables given in the 19th century by a French mathematician Delaunay, however, has been limited to separable systems. A generalisation, independent of the notion of separability, was formulated by Arnol'd (1978). His approach allows us to define the action-angle variables for every completely integrable Hamiltonian system with n degrees of freedom (i.e. with n independent integrals of motion in involution), provided that the invariant manifolds determined by the integrals are connected and bounded. These manifolds then are diffeomorphic to n-dimensional tori T^{n}, and the action variables are defined geometrically as the integrals of the differential one-form $\Sigma p_{i} \mathrm{~d} q_{i}$ over the fundamental cycles Γ_{i} on the tori: $I_{k}=\oint_{\Gamma_{k}} \Sigma p_{i} \mathrm{~d} q_{i}$. The value of I_{k} is independent of the choice of the cycle homotopic to Γ_{k}.

Originally the action-angle variables were applied mainly to perturbation calculus in astronomy. Later they became a useful tool for quantisation of classical systems. The recent discovery of a whole class of completely integrable systems of n particles interacting on the line has renewed interest in the action-angle variables. However, there exist some ambiguities of the choice of the action-angle variables within Arnol'd's definition.

The aim of this paper is to describe the transformations of the action-angle variables allowed by the definition (cf Stehle and Han 1967). For Hamiltonian systems possessing the $\mathrm{SU}(n)$ algebra of integrals, an inverse relationship of 'actions' to generators of the symmetry group is discussed, providing the action variables for non-separable systems.

For simplicity, our considerations are limited to two-dimensional systems only, and the generalisation for arbitrary n is briefly discussed.

2. Preliminaries

We shall consider a classical Hamiltonian system with two degrees of freedom admitting the action-angle variables $\left(I_{1}, I_{2}, w_{1}, w_{2}\right)$. Let $F\left(I_{1}, I_{2}\right)=\left(\partial H / \partial I_{1}\right) /\left(\partial H / \partial I_{2}\right)$ and let D be an open set of R^{2} such that F is defined for all $\left(I_{1}, I_{2}\right) \in D$ and
(i) $F\left(I_{1}, I_{2}\right)=$ constant for all $\left(I_{1}, I_{2}\right) \in D$ or
(ii) there exists no open set $D^{\prime} \subset D\left(D^{\prime} \neq \varnothing\right)$ such that $F\left(I_{1}, I_{2}\right)=$ constant for all $\left(I_{1}, I_{2}\right) \in D^{\prime}$.
In case (i) we shall call the system degenerate (non-degenerate) on D if $F\left(I_{1}, I_{2}\right)$ is a rational (irrational) number. Continuity arguments ensure that in case (ii) the transformations of the action-angle variables have the same form as for non-degenerate systems.

3. Non-degenerate systems

A classical Hamiltonian system with two degrees of freedom admitting action-angle variables ($I_{1}, I_{2}, w_{1}, w_{2}$), where $\left(I_{1}, I_{2}\right) \in D$, is said to be non-degenerate if the ratio ν_{1} / ν_{2} of the frequencies $\nu_{i}=\partial H / \partial I_{i}$ is an irrational number for all $\left(I_{1}, I_{2}\right) \in D$. In this case each orbit of the system is dense in its torus. This fact is connected with the non-existence of the third independent and single-valued integral of motion. If $\left(I_{1}, I_{2}, w_{1}, w_{2}\right)$ are the action-angle variables, then the uniqueness of the tori restricts the permissible transformations of the action-angle variables to

$$
\begin{align*}
& J_{k}=J_{k}\left(I_{1}, I_{2}\right), \\
& u_{k}=a_{k 1}\left(I_{1}, I_{2}\right) w_{1}+a_{k 2}\left(I_{1}, I_{2}\right) w_{2}+f_{k}\left(I_{1}, I_{2}\right),
\end{align*} \quad k=1,2,
$$

where the mapping $\left(I_{1}, I_{2}\right) \rightarrow\left(J_{1}, J_{2}\right)$ is a diffeomorphism and $a_{k l}, f_{k}$ are arbitrary C^{2} functions such that the matrix $\left[a_{k l}\right]$ is non-singular for all $\left(I_{1}, I_{2}\right) \in D$. We shall limit ourselves to the transformations for which $f_{k}\left(I_{1}, I_{2}\right)=0$. This is justified because the functions f_{k} do not influence geometrical aspects of the transformation.

The angle variables are infinitely-many-valued functions of the physical variables (for example, of the separation variables). Two sets of coordinates, which differ by a multiplicity of 2π, describe the same point in the phase space. To satisfy the same condition in the new angle variables $a_{k l}$ have to be integers. An analogous argument for the inverse transformation yields $w_{k}=\hat{a}_{k 1} u_{1}+\hat{a}_{k 2} u_{2}$ where $\hat{a}_{k i}$ are also integers. The matrix [\hat{a}] is the inverse of $[a]$.

The determinant of the integer matrix is integral, and therefore from $\operatorname{det}\left([a]^{-1}\right]=$ $(\operatorname{det}[a])^{-1}$ for integer matrices $[a]$ and $[a]^{-1}$ we obtain $\operatorname{det}[a]= \pm 1$. Conversely, the fact that $[a]$ is the integer matrix and $\operatorname{det}[a]= \pm 1$ implies that $[a]^{-1}$ is an integer matrix too.

From these considerations we can conclude that if $u_{k}=a_{k 1} w_{1}+a_{k 2} w_{2}$, then u_{1}, u_{2} are angle variables on the torus, if and only if $[a]$ is an integer matrix and $\operatorname{det}[a]= \pm 1$.

The formula $\oint_{\Gamma_{i}} \mathrm{~d} w_{j}=2 \pi \delta_{i j}$ defines the cycles Γ_{i} on the torus corresponding to the angle variables w_{i}.

Let Γ_{i}^{\prime} denote a cycle corresponding to the new angle variable u_{i}. Four relations (defining the cycles) $\oint_{\Gamma^{\prime}} \mathrm{d} u_{j}=2 \pi \delta_{i j}$ yield

$$
\Gamma_{1}^{\prime}=\operatorname{det}[a]\left(a_{22} \Gamma_{1}-a_{21} \Gamma_{2}\right), \quad \Gamma_{2}^{\prime}=\operatorname{det}[a]\left(a_{11} \Gamma_{2}-a_{12} \Gamma_{1}\right) .
$$

Now it is easy to calculate new action variables. By definition,

$$
\begin{aligned}
& J_{1}=\frac{1}{2 \pi} \oint_{\Gamma_{1}^{\prime}}\left(I_{1} \mathrm{~d} w_{1}+I_{2} \mathrm{~d} w_{2}\right)=\operatorname{det}[a]\left(a_{22} I_{1}-a_{21} I_{2}\right), \\
& J_{2}=\frac{1}{2 \pi} \oint_{\Gamma_{2}^{\prime}}\left(I_{1} \mathrm{~d} w_{1}+I_{2} \mathrm{~d} w_{2}\right)=\operatorname{det}[a]\left(a_{11} I_{2}-a_{12} I_{1}\right) .
\end{aligned}
$$

Writing $J_{k}=a_{k 1}^{\prime} I_{1}+a_{k 2}^{\prime} I_{2}$ we obtain $\left[a^{\prime}\right]=\left([a]^{-1}\right)^{\mathrm{T}}$ where $[\cdot]^{\mathrm{T}}$ denotes the transposed matrix. The canonical Poisson-bracket relations $\left\{u_{i}, J_{j}\right\}=\delta_{i j}$ are automatically satisfied.

Let us now return to formulae (1). Clearly, it is always possible to define new variables as

$$
J_{k}=I_{k}+C_{k}, \quad u_{k}=w_{k}+f_{k}\left(I_{1}, I_{2}\right) .
$$

From the Poisson-bracket relation $\left\{u_{i}, u_{j}\right\}=0$ we obtain $\partial f_{2} / \partial I_{1}=\partial f_{1} / \partial I_{2}$, and ultimately we obtain

$$
\begin{equation*}
J_{k}=I_{k}+C_{k}, \quad u_{k}=w_{k}+\partial f / \partial I_{k}, \tag{*}
\end{equation*}
$$

where f is an arbitrary C^{3} function of I_{1}, I_{2}.
The shifts (${ }^{*}$), together with the linear transformations discussed above, describe the whole freedom of choice of the action-angle variables on fixed tori.

The simple generalisation of the above considerations for non-degenerate Hamiltonian systems with more than two degrees of freedom is obvious. The transformations to new action-angle variables are of the same form as in the case $n=2$, with integer matrices with integral inverses.

4. Degenerate systems

A classical Hamiltonian system with two degrees of freedom, admitting the actionangle variables ($I_{1}, I_{2}, w_{1}, w_{2}$), is said to be degenerate on D if $l_{1} \partial H / \partial I_{1}=l_{2} \partial H / \partial I_{2}$ for all $\left(I_{1}, I_{2}\right) \in D$ with l_{1}, l_{2} integers. This formula means that the ratio of frequencies ν_{1} / ν_{2} is rational. One can therefore construct the third independent integral of motion $I_{3}=\sin \left(l_{1} w_{1}-l_{2} w_{2}\right)$, which will be a single-valued, bounded function on the phase space. The existence of the third independent and single-valued integral is, in fact, equivalent to the condition of degeneracy.

In the case of degeneracy the orbits of the system are closed on the tori. Therefore we have a freedom of extension of the one-dimensional tori to two-dimensional ones.

Equivalently, we have a freedom of choice of two independent integrals of motion in involution (as the functions of I_{1}, I_{2}, I_{3}). They determine the two-dimensional tori. It is easier to see this in the action-angle variables 'compatible with the structure of trajectories' (CST).

We shall call the action-angle variables CSt variables if the Hamiltonian is a function of a one-action variable only:

$$
H=H\left(I_{1}\right) .
$$

Thus the equations of motion in CST variables take the form

$$
\begin{array}{ll}
\dot{I}_{1}=0, & \dot{w}_{1}=\mathrm{d} H / \mathrm{d} I_{1}, \\
\dot{I}_{2}=0, & \dot{w}_{2}=0 .
\end{array}
$$

The variable w_{1} describes a linear motion along a closed curve and w_{2} is an infinitely-many-valued integral of motion. As the third single-valued integral of motion one can take $I_{3}=\sin w_{2}$.

It is easy to show that CST variables exist for every degenerate Hamiltonian system with two degrees of freedom. Namely, let $H=H\left(I_{1} / l_{1}+I_{2} / l_{2}\right)$ with l_{1}, l_{2} mutually prime; then one can always choose integers k_{1}, k_{2} satisfying $l_{2} k_{1}-l_{1} k_{2}=1$ and define new action variables as

$$
\begin{equation*}
J_{1}=l_{2} I_{1}+l_{1} I_{2}, \quad J_{2}=k_{2} I_{1}+k_{1} I_{2} \tag{}
\end{equation*}
$$

They are cst variables since $H=H\left[\left(1 / l_{1} l_{2}\right) J_{1}\right]$.
The freedom of choice of cst variables for a fixed Hamiltonian is described by canonical transformations of the form

$$
\begin{array}{ll}
J_{1}=f_{1}\left(I_{1}\right), & u_{1}=\left(1 / f_{1}^{\prime}\right) w_{1}+g_{1}\left(I_{1}, I_{2}, w_{2}\right), \\
J_{2}=f_{2}\left(I_{1}, I_{2}, I_{3}\right), & u_{2}=g_{2}\left(I_{1}, I_{2}, w_{2}\right) . \tag{2}
\end{array}
$$

A one-to-one description of the phase space requires

$$
\begin{align*}
& f_{1}^{\prime}= \pm 1, \\
& g_{1}\left(I_{1}, I_{2}, w_{2}+2 \pi\right)-g_{1}\left(I_{1}, I_{2}, w_{2}\right)=2 n \pi, \tag{**}\\
& g_{2}\left(I_{1}, I_{2}, w_{2}+2 \pi\right)-g_{2}\left(I_{1}, I_{2}, w_{2}\right)= \pm 2 \pi,
\end{align*}
$$

and from the canonical Poisson-bracket relations it follows that

$$
\begin{align*}
& \frac{\partial f_{2}}{\partial w_{2}} \frac{\partial g_{1}}{\partial I_{2}}-\frac{\partial f_{2}}{\partial I_{2}} \frac{\partial g_{1}}{\partial w_{2}}=\frac{1}{f_{1}^{\prime}} \frac{\partial f_{2}}{\partial I_{1}}, \\
& \frac{\partial f_{2}}{\partial w_{2}} \frac{\partial g_{2}}{\partial I_{2}}-\frac{\partial f_{2}}{\partial I_{2}} \frac{\partial g_{2}}{\partial w_{2}}=-1, \tag{**}\\
& \frac{\partial g_{1}}{\partial I_{2}} \frac{\partial g_{2}}{\partial w_{2}}-\frac{\partial g_{1}}{\partial w_{2}} \frac{\partial g_{2}}{\partial I_{2}}=\frac{1}{f_{1}^{\prime}} \frac{\partial g_{2}}{\partial I_{1}} .
\end{align*}
$$

Thus, the canonical transformations (2) complemented by the transformations on fixed tori (1) represent the whole freedom of choice of the action-angle variables for a degenerate Hamiltonian system with two degrees of freedom. Moreover, as in CST variables the Hamiltonian has the form $H=f\left(\pm I_{1}\right)$ and transformations to all other action variables are of the form $I_{1}=l_{2} J_{1}+l_{1} J_{2}$, where l_{1}, l_{2} are mutually prime, we arrive at the following conclusion. The dependence of the Hamiltonian on the action-angle variables is of the form $H=f\left[\pm\left(l_{2} J_{1}+l_{1} J_{2}\right)\right]$ where l_{1}, l_{2} are arbitrary mutually prime integers and f is a fixed function of one variable.

The formulae for the canonical transformations (2) as well as the above conclusion can be simply generalised for completely degenerate Hamiltonian systems with more than two degrees of freedom. It is sufficient to introduce CST variables through the application of the transformation $\left(^{*}\right)$ to various pairs of action variables in the way illustrated by the following example.

Let us take the Hamiltonian $H=H\left(l_{1} I_{1}+l_{2} I_{2}+l_{3} I_{3}\right)$ for the system with three degrees of freedom. New action variables can be introduced by the formulae

$$
J_{1}=l_{1}^{\prime} I_{1}+l_{2}^{\prime} I_{2}, \quad J_{2}=k_{1} I_{1}+k_{2} I_{2}, \quad J_{3}=I_{3},
$$

where $l_{1}^{\prime} k_{2}-l_{2}^{\prime} k_{1}=1, l_{1}^{\prime}, l_{2}^{\prime}$ are mutually prime and $l_{k}=l l_{k}^{\prime}$. We define again

$$
\begin{aligned}
& J_{1}^{\prime}=J_{1}+l_{3} J_{3}=l_{1} I_{1}+l_{2} I_{2}+l_{3} I_{3}, \\
& J_{2}^{\prime}=J_{2}=k_{1} I_{1}+k_{2} I_{2}, \\
& J_{3}^{\prime}=k_{3} J_{3}+k J_{1}=k l_{1}^{\prime} I_{1}+k l_{2}^{\prime} I_{2}+k_{3} I_{3} \quad \text { where } l k_{3}-l_{3} k=1 .
\end{aligned}
$$

The Hamiltonian in the variables J_{k}^{\prime} is of the form $H=H\left(J_{1}^{\prime}\right)$, and therefore J_{k}^{\prime} are CST variables.

In the next two examples we show the simplest transformations satisfying (**) and discuss their relationship with the separability of the Hamiltonian in various coordinate systems.

Example 1. For the simplest interesting functions $f_{1}=I_{1}, f_{2}=I_{3}=\sin w_{2}$, the equations ${ }^{(* *)}$ have the following solutions satisfying the conditions of periodicity:

$$
g_{1}=n w_{2}, \quad g_{2}= \pm w_{2}+\left(n I_{1}-I_{2}\right) / \cos w_{2} .
$$

Thus, the new action-angle variables are of the form

$$
\begin{array}{ll}
J_{1}=I_{1}, & u_{1}=w_{1}+n w_{2}, \\
J_{2}=\sin w_{2}, & u_{2}= \pm w_{2}+\left(n I_{1}-I_{2}\right) / \cos w_{2}
\end{array}
$$

Example 2. The separation of the Hamiltonian of the harmonic oscillator in the cartesian coordinates (x, y) gives the following action-angle variables:

$$
\begin{array}{ll}
I_{x}=\frac{1}{2 \omega} p_{x}^{2}+\frac{\omega}{2} x^{2}, & w_{x}=\sin ^{-1}\left(\frac{\omega}{2 I_{x}}\right)^{1 / 2} x, \\
I_{y}=\frac{1}{2 \omega} p_{y}^{2}+\frac{\omega}{2} y^{2}, & w_{y}=\sin ^{-1}\left(\frac{\omega}{2 I_{y}}\right)^{1 / 2} y,
\end{array}
$$

where $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} \omega^{2}\left(x^{2}+y^{2}\right)$. Therefore the CST variables have the form

$$
I_{1}=I_{x}+I_{y}, \quad w_{1}=w_{y}, \quad I_{2}=I_{x}, \quad w_{2}=w_{x}-w_{y} .
$$

By separation of the Hamiltonian in the new, rotated coordinates

$$
u=x \sin \theta+y \cos \theta, \quad v=-x \cos \theta+y \sin \theta,
$$

we obtain CST variables connected with I_{1}, I_{2} by the transformation

$$
\begin{align*}
& I_{1}^{\prime}=f_{1}^{\prime}\left(I_{1}\right)=I_{1}, \\
& I_{2}^{\prime}=f_{2}^{\prime}\left(I_{1}, I_{2}\right)=I_{1} \cos ^{2} \theta-I_{2} \cos 2 \theta+\left(I_{1} I_{2}-I_{2}^{2}\right)^{1 / 2}\left(\cos w_{2}\right) \sin 2 \theta .
\end{align*}
$$

Likewise, the separation in polar coordinates gives CST variables connected with I_{1}, I_{2} by the transformation

$$
I_{1}^{\prime \prime}=f_{1}^{\prime \prime}\left(I_{1}\right)=I_{1}, \quad I_{2}^{\prime \prime}=f_{2}^{\prime \prime}\left(I_{1}, I_{2}\right)=\frac{1}{2} I_{1}-\left(I_{1} I_{2}-I_{2}^{2}\right)^{1 / 2} \sin w_{2}
$$

This means that for the functions f_{1}, f_{2} defined by the transformations (2^{\prime}), ($2^{\prime \prime}$) there exist solutions of equations $\left({ }^{* *}\right)$ satisfying the necessary conditions of periodicity. This fact will be useful in the next section.

5. Relationship of the action-angle variables to the generators of the symmetry group

In this section we shall use the $\mathrm{SU}(2)$ algebra of integral-generators of the symmetry group to obtain the action variables.

Duimio and Pauri (1967) have presented a general technique for the construction of the $\operatorname{SU}(n)$ algebra of the integrals of motion from the action-angle variables. It is applicable for every completely degenerate bounded Hamiltonian system with n degrees of freedom.

In the case $n=2$, if the Hamiltonian is of the form $H=H\left(I_{1} / l_{1}+I_{2} / l_{2}\right)$ where $l_{1} I_{1}>0, l_{2} I_{2}>0$, the most general realisation of the generators of the symmetry group $S U(2)$ (up to an arbitrary single-valued canonical transformation) uniquely determining each trajectory is defined by the global and univalent integrals

$$
\begin{gather*}
A_{1}=\left(\frac{I_{1}}{l_{1}} \frac{I_{2}}{l_{2}}\right)^{1 / 2} \sin \left(l_{1} w_{1}-l_{2} w_{2}\right), \quad A_{2}=\left(\frac{I_{1}}{l_{1}} \frac{I_{2}}{l_{2}}\right)^{1 / 2} \cos \left(l_{1} w_{1}-l_{2} w_{2}\right), \tag{3}\\
A_{3}=\frac{1}{2}\left(I_{2} / l_{2}-I_{1} / l_{1}\right) .
\end{gather*}
$$

The integrals A_{i} satisfy the commutation relations $\left\{A_{i}, A_{i}\right\}=\varepsilon_{i j k} A_{k}$ of the $\operatorname{SU}(2)$ algebra. The Casimir operator is $K=A_{1}^{2}+A_{2}^{2}+A_{3}^{2}=\frac{1}{4}\left(I_{1} / l_{1}+I_{2} / l_{2}\right)^{2}$. In view of the generality of the Duimio and Pauri (1967) construction (cf Onofri and Pauri 1969), each set of the generators of $\mathrm{SU}(2)$ can be determined by formulae (3) from some actionangle variables. Thus by inverting formulae (3) one can recover the action variables:

$$
I_{1} / l_{1}=(K)^{1 / 2}-A_{3}, \quad I_{2} / l_{2}=(K)^{1 / 2}+A_{3}
$$

The cyclic form of the commutation relations $\left\{A_{i}, A_{j}\right\}=\varepsilon_{i j k} A_{k}$ suggests that the different action variables can be defined by

$$
J_{1} / l_{1}=(K)^{1 / 2}-A_{k}, \quad J_{2} / l_{2}=(K)^{1 / 2}+A_{k}, \quad k=1,2 .
$$

To prove that J_{i} are indeed the 'actions' (i.e. can complement angles) we shall use CST variables. In agreement with the previous section, every Hamiltonian can be described in certain action-angle variables as $H=H\left(I_{1}+I_{2}\right)$.

Let us introduce CST variables by

$$
J_{1}=I_{1}+I_{2}, \quad u_{1}=w_{2}, \quad J_{2}=I_{1}, \quad u_{2}=w_{1}-w_{2} ;
$$

then the generators of $\mathrm{SU}(2)$ have the form
$A_{1}=\left(J_{1} J_{2}-J_{2}^{2}\right)^{1 / 2} \sin u_{2}, \quad A_{2}\left(J_{1} J_{2}-J_{2}^{2}\right)^{1 / 2} \cos u_{2}, \quad A_{3}=\frac{1}{2} J_{1}-J_{2}$,
and inverse relations yield

$$
J_{1}=2(K)^{1 / 2}, \quad J_{2}=(K)^{1 / 2}-A_{3} .
$$

According to our guess, we define new CST variables as

$$
J_{1}^{\prime}=2(K)^{1 / 2}=J_{1}, \quad J_{2}^{\prime}=(K)^{1 / 2}-A_{1}=\frac{1}{2} J_{1}-\left(J_{1} J_{2}-J_{2}^{2}\right)^{1 / 2} \sin u_{2}
$$

The results of example $2\left(2^{\prime}\right)$ ensure that the above formulae really determine the transformation to CST variables. This is also true for the transformation defined by

$$
J_{1}^{\prime \prime}=2(K)^{1 / 2}=J_{1}, \quad J_{2}^{\prime \prime}=(K)^{1 / 2}-A_{2}=\frac{1}{2} J_{1}-\left(J_{1} J_{2}-J_{2}^{2}\right)^{1 / 2} \cos u_{2},
$$

as the mutual interchange of $\sin u_{2}$ and $\cos u_{2}$ does not change the periodicity of solutions of the equations (${ }^{* *}$).

The above considerations present the method of obtaining the action-angle variables. Namely, one can find the generators of the $\mathrm{SU}(2)$ symmetry group and obtain the action variables by the formulae

$$
I_{1} / l_{1}=(K)^{1 / 2}-A_{k}, \quad I_{2} / l_{2}=(K)^{1 / 2}+A_{k}, \quad k=1,2,3 .
$$

It is necessary to choose the integers l_{1}, l_{2} properly in order to ensure periodicity of the corresponding angle variables. This procedure allows us to connect with every $\operatorname{SU}(2)$ algebra of integrals three sets of action-angle variables. Thus, in order to construct new action variables, one can start from the algebra of integrals A_{i} and look for new sets of integrals given by functions $f_{k}\left(A_{i}\right)$. The commutation relations $\left\{f_{k}, f_{l}\right\}=\varepsilon_{k l s} f_{s}$ provide us with the following system of differential equations for the generators:

$$
\begin{equation*}
\sum_{i j k}\left(\frac{\partial f_{r}}{\partial A_{i}} \frac{\partial f_{s}}{\partial A_{j}}-\frac{\partial f_{r}}{\partial A_{j}} \frac{\partial f_{s}}{\partial A_{i}}\right) A_{k}=f_{i} \tag{4}
\end{equation*}
$$

where $i, j, k, r, s, t=1,2,3$.
The cyclic form of this equation ensures that the general solution is given by the functions f_{i} of the first order in A_{j}. Therefore the Casimir operator $f_{1}^{2}+f_{2}^{2}+f_{3}^{2}=g(K)$, given by some function of the old one, has to satisfy $f_{1}^{2}+f_{2}^{2}+f_{3}^{2}=c K$, where c is some integer constant. We do not know a general solution for the system of equations (4). As a simple solution (preserving the Casimir operator of the algebra) we shall consider the rotations by an angle θ around the A_{1} axis in the space of integrals. They lead to the following new generators:
$B_{1}=A_{1}, \quad B_{2}=A_{2} \cos \theta+A_{3} \sin \theta, \quad B_{3}=-A_{2} \sin \theta+A_{3} \cos \theta$.
Identical generators can be obtained from formulae (3) applied to action-angle variables of the harmonic oscillator corresponding to separation coordinates rotated by an angle $\frac{1}{2} \theta$. It is straightforward to generalise this rotation by allowing angle θ to be dependent on the generators A_{i}. Take

$$
\begin{aligned}
& B_{1}=A_{1}, \quad B_{2}=A_{2} \cos f\left(A_{1}, A_{2}, A_{3}\right)+A_{3} \sin f\left(A_{1}, A_{2}, A_{3}\right), \\
& B_{3}=-A_{2} \sin f\left(A_{1}, A_{2}, A_{3}\right)+A_{3} \cos f\left(A_{1}, A_{2}, A_{3}\right) ;
\end{aligned}
$$

then by virtue of (4), $f\left(A_{1}, A_{2}, A_{3}\right)=\hat{f}\left(A_{1}, A_{2}^{2}+A_{3}^{2}\right)$.
However, there are solutions of equations (4) which do not preserve the Casimir operator. Let us take two algebras of integrals for the harmonic oscillator obtained by the separation in cartesian coordinates (x, y) and coordinates defined by $u=x-y$, $v=x+y$. They are connected by the transformation

$$
B_{1}=-\frac{1}{2} A_{1}, \quad B_{2}=\frac{A_{2} A_{3}}{\left(A_{2}^{2}+A_{3}^{2}\right)^{1 / 2}}, \quad B_{3}=\frac{A_{2}^{2}-A_{3}^{2}}{\left(A_{2}^{2}+A_{3}^{2}\right)^{1 / 2}}
$$

which does not preserve the Casimir operator: $B_{1}^{2}+B_{2}^{2}+B_{3}^{2}=\left(A_{1}^{2}+A_{2}^{2}+A_{3}^{2}\right) / 4$.
It is simple to generalise the above considerations for completely degenerate Hamiltonian systems with more than two degrees of freedom. Formulae for the
generators of the $\operatorname{SU}(n)$ symmetry group given by Duimio and Pauri (1967), i.e.

$$
\begin{aligned}
& N_{i j}=2\left(\frac{I_{i}}{l_{i}} \frac{I_{j}}{l_{j}}\right)^{1 / 2} \cos \left(l_{i} w_{i}-l_{j} w_{j}\right), \quad N_{i i}=2\left(\frac{I_{i}}{l_{i}}-\frac{1}{n} \sum_{k} \frac{I_{k}}{l_{k}}\right), \\
& M_{i j}=2\left(\frac{I_{i}}{l_{i}} I_{j}\right)^{1 / 2} \sin \left(l_{i} w_{i}-l_{j} w_{j}\right),
\end{aligned}
$$

allow us to enlarge the prescription for obtaining 'actions'. It is necessary to solve the system of algebraical equations

$$
\frac{I_{i} I_{j}}{l_{i} l_{j}}=\left(M_{i j}^{2}+N_{i j}^{2}\right) / 4 \quad(\text { for } n \geqslant 3)
$$

Acknowledgments

The author is very grateful to Dr S Wojciechowski for suggestions, comments and helpful discussion and would like to thank Professor B Mielnik for critical reading of the manuscript.

References

Arnol'd V I 1978 Mathematical Methods of Classical Mechanics (Berlin: Springer)
Duimio F and Pauri M 1967 Nuovo Cimento 511141
Onofri E and Pauri M 1969 Lett. Nuovo Cimento 2607
Stehle P and Han M Y 1967 Phys. Rev. 1591076

